Printable, Temporary Tattoo-like Medical Sensors are Under Development

pulse-trace-163708_640There is a new high-energy action and suspense drama on NBC this year called Blindspot. The first episode began when a woman in left in a luggage bag in the middle of Times Square in New York with tattoos completely covering her and absolutely no memory of who she is or how she got there. She is taken in by the FBI who starts to analyze her tattoos and see if they can figure out who she was before her memory was intentionally destroyed. It turns out that the tattoos are puzzles that, once solved, start to lead a team of agents assigned to her to a series of dangerous criminal operations.

“Jane” as they call her, is quickly made a part of this FBI team because, without knowing why, she immediately exhibits professional level fighting and weapons skills. She is also highly motivated to find out her real identity and is starting to experience brief memory flashbacks. All sorts of subplots and machinations have begun to sprout up regarding her true identity and how she ended up in this dilemma.

So far, the show is doing well in the ratings. Imho, after four episodes it’s off to a compelling and creative start. I plan to keep watching it. (The only minor thing I don’t like about it is the way the production team is using the shaky cam so much it’s making me feel a bit seasick at times.)

The lead actress, Jamie Alexander, who plays Jane, is actually wearing just temporary tattoos on the show. While these cryptic designs are the main device to propel the fictional plots forward in each episode, back in the non-fictional real world temporary tattoo-like devices are also currently being tested by researchers as medical sensors to gather patients’ biological data. This news adds a whole new meaning to the notion of medical application.

This advancement was reported in a most interesting article on Smithsonian.com, posted on October 8, 2015 entitled Tiny, Tattoo-Like Wearables Could Monitor Your Health, by Heather Hansman. I will summarize and annotate it in an effort to provide a, well, ink-ling about this story, and then pose some of my own questions.

Research and Development

This project, in a field called bio-integrated electronics, is being conducted at the University of Texas at Austin’s Cockrell School of Engineering. The research team is being led by Professor Nanshu Lu (who received her Ph.D. from Harvard).  Her team’s experimental patch is currently being applied to test heart rates and blood oxygen levels.

When Dr. Lu and her team were investigating the possibility of creating these “tattoo-like wearables”, their main concern was the manufacturing process, not the sensors themselves because there were many already available. Instead, they focused upon creating these devices to be both disposable and inexpensive. Prior attempts elsewhere had proven to be more “expensive and time-consuming”.

This led them to pursue the use of  3D printing . (These four Subway Fold posts cover other applications of this technology.) They devised a means to print out “patterns on a sheet of metal instead of forming the electronics in a mold”. They easily found the type of metal material for this purpose in a hardware store. Essentially, the patterns were cut into it rather than removed from it. Next, this electronic component was “transfer printed onto medical tape or tattoo adhesive”. Altogether, it is about the size of a credit card. (There is a picture of one at the top of the article on Smithsonian.com linked above.)

The entire printing process takes about 20 minutes and can be done without the use of a dedicated lab. Dr. Lu is working to get the cost of each patch down to around $1.

Current Objectives

The teams further objective is to “integrate multiple sensors and antenna” into the patches in order to capture vital signs and wirelessly transmit them to doctors’ and patient’s computing devices.  They can be used to measure a patient’s:

One of the remaining issues to mass producing the patches is making them wireless using Bluetooth or near field communication (NFC) technology. At this point, chip producers have not made any commitments to make such chips small enough. Nonetheless, Dr. Lu and her team are working on creating their own chip which they expect will be about the size of a coin.

My Questions

  • Could this sensor be adapted to measure blood glucose levels? (See a similar line of research and development covered in the June 27, 2015 Subway Fold post entitled Medical Researchers are Developing a “Smart Insulin Patch”.)
  • Could this sensor be adapted to improve upon the traditional patch test for allergies?
  • Could this sensor be adapted for usage in non-vital sign data for biofeedback therapies?
  • Would adding some artwork to these patches make them aesthetically more pleasing and thus perhaps more acceptable to patients?
  • Could this sensor be further developed to capture multiple types of medical data?
  • Are these sensors being secured in such a manner to protect the patients’ privacy and from any possible tampering?
  • Could the production team of Blindspot please take it easy already with the shaky cam?

One thought on “Printable, Temporary Tattoo-like Medical Sensors are Under Development

  1. Pingback: Artificial Fingerprints: Something Worth Touching Upon |

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s