Book Review of “Inventology: How We Dream Up Things That Change the World”

"Toolbox_LRG", Image by Limor

“Toolbox_LRG”, Image by Limor.

My father loved to tell this story: One of his classmates while he attended the University of Pennsylvania School of Dental Medicine was named Robert Schattner. Several years after they graduated, he went on to invent the over-the-counter sore throat lozenge and spray called Chloraseptic. This remedy has been on the market for decades ever since then.

Schattner first devised this product entirely on his own after someone who had just had some teeth pulled asked him for an antiseptic to relieve the pain. He later sold the formula and the rights to a pharmaceutical company for $4M. (Given the rate of inflation since then, this sum today would have been magnitudes more and certainly nothing to sneeze or cough at.)

Thereafter he left the practice of dentistry and went on became a successful businessman and philanthropist. He also contributed for the construction of a new building for the U Penn dental school named the Robert Schattner Center. A brief summary of his invention and contributions can be found in an article entitled Capital Buzz: Chloraseptic Inventor Offers Remedy for School, by Thomas Heath, which appeared in The Washington Post on October 23, 2011.

Mapping the Inventive Process

This is a classic example of how inventors find their ideas and inspiration. There are many other circumstances, methodologies, environments, personality traits, events, technologies and chances occurrences that can also precipitate new inventions. All of them are expertly explained and explored in Inventology: How We Dream Up Things That Change the World (Eamon Dolan/Houghton Mifflin Harcourt, 2016), by Pagan Kennedy.

The book’s five sections distinctly map out the steps in the inception and realization of things so entirely new. In doing so, the author transports the reader to center of this creative process. She deftly uses highly engaging stories, exposition and analyses to illuminate the resourcefulness and persistence of inventors leading to their breakthroughs.

Some of these tales may be familiar but they are skillfully recounted and placed into new contexts. For example, in 1968, an engineer and inventor named Douglas Englebart demonstrated a working computer for the first time with a heretofore unseen “mouse” and “graphical user interface”. (This story has gone on to become a tech legend known as The Mother of All Demos.) Others are presented who are less well-known but brought to life in highly compelling narratives. Together they provide valuable new lessons on the incubation of inventions along a wide spectrum ranging from sippy cups and water toys to mobile phones and medical devices.

The author has seemingly devised a meta-invention of her own: A refreshingly new perspective on reporting the who, what, where and why of inventors, their creations and their wills to succeed. It is a richly detailed schematic of how a creative mind can conceive and execute an original idea for a new widget and, moreover, articulate the need for it and the problem it solves.

Among other methods, Ms. Pagan covers the practice of conducting thought experiments on new concepts that may or may not lend themselves to actual experimentation in the real world. This process was made well-known by Einstein’s efforts to visualize certain problems in physics that led him to his monumental achievements. I suggest trying a thought experiment here to imagine the range of the potential areas of applications for Inventology to evaluate, in an age of countless startups and rapid scientific and technological advancements, all of the populations, challenges and companies it might benefit. Indeed, this book could readily inspire nearly anyone so inclined to pick up a pencil or soldering iron in order to launch the realization of their own proverbial better mousetrap.

Resources for Inventors

Within all of the lively content packed into this book, the struggles and legacy of a previously little known and tragically persecuted figure who learned to harness and teach the inventive process, springs right off the pages. He was a fascinating figure named  Genrich Altshuller who worked as an engineer, writer and inventor in Russia. His most important contribution to the science of invention was the development of the Theory of Inventive Problem Solving (better known by its Russian acronym of “TRIZ”). This is a comprehensive system for analyzing and implementing inventive solutions to problems of nearly every imaginable type and scale. Altschuller was willing to share this and instruct anyone who was willing to participate in studying TRIZ. It is still widely used across the modern world. The author masterfully breaks down and clearly explains its essential components.

The true gem in the entire book is how Altshuller, while imprisoned in a brutal jail in Stalinist Russia, used only his mind to devise an ingenious solution to outwit his relentless interrogators. No spoilers here, but it is an emotional triumph that captures the heart and spirit of this remarkable man. Altshuller’s life and influence in generating thousands of inventions reads as though it might make for a dramatic biopic.

Also threaded and detailed throughout the book are the current bounty of easily accessible technological tools available to inventors. First, the web holds a virtual quantum of nearly limitless data that can be researched, processed, shared, crowdsourced (on sites such as InnoCentive) and crowdfunded (on sites such as Kickstarter and Indigogo), in search of medical advances, among many other fields.¹ Second, 3D printing² can be used to quickly and inexpensively fabricate and work on enhancing prototypes of inventions. As a result of this surfeit of resources, the lengthy timelines and prohibitive cost curves that previously discouraged and delayed inventors have now been significantly reduced.

Impossibility is Only Temporary

I live in a neighborhood where it is nearly impossible to park a car. An open parking space has a half-life on the street of about .000001 nano-seconds before it is taken. This situation often reminds me of a suggestion my father also made to me when I was very young. He told me that if I really wanted to solve an important problem when I grew up, I should try to invent a car that, at the press of a button, would fold up into the size and shape of a briefcase that could be easily carried away. At the time, I thought it was impossible and immediately put the, well, brakes on this idea.

Nonetheless, as Inventology expressly and persuasively makes its own brief case, true inventors see impossibility as merely a temporary condition that, with enough imagination and determination, can be overcome. For budding Edisons and creative problem solvers everywhere, this book adds a whole new meaning to the imperative that nothing is truly impossible if you try hard enough and long enough to solve it. This indefatigable spirit permeates all 223 pages of this wonderfully enjoyable, inspirational and informative book.

Inventing your own reason to read it should be easy.

For a dozen very timely examples of inventors and their inventions further typifying much of the content and spirit of Inventology, I highly recommend reading a new feature and viewing its accompanying video posted on on April 26, 2016, entitled These Top Twelve Inventions Could One Day Change the World, by Mike Murphy. It covers the finalists in the 2016 European Inventors Award competition currently being run by the European Patent Office.

1.  For example, last week’s Only Human podcast on NPR included a report on how a woman with Type 1 (T1) diabetes, along with the assistance of her husband, had hacked together an artificial pancreas (called a “closed loop” system), and then shared the technical specs online with other T1s in the Seattle area. I highly recommend listening to this podcast entitled The Robot Vacuum Ate My Pancreas in its entirety.

2.  See also these six Subway Fold posts for a sampling of other trends and developments in 3D printing.

Feat First: New Findings on the Relationship Between Walking and Creativity

"I Heart New York", Image by Gary McCabe

“I Heart New York”, Image by Gary McCabe

New York is an incredibly vast and complex city in a multitude of ways which, despite its extensive mass transit system, also makes it a great place to walk around. Many New Yorkers prefer to travel to their destinations by foot purely for the pleasure of it. I am proudly one among them.

Whether it is on the streets of NYC or anywhere else across the world, bipedal locomotion is a healthy, no cost and deeply sensory experience as you take in all of the sights and sounds along your route. It also gives you the opportunity to think to yourself. Whether it is pondering the particulars of “When am I going to get the laundry done?” up to and including “E=MC²”, plus a gazillion other possible thoughts and subjects in between, putting one foot in front of another and then starting off of your way will transport you to all kinds of intriguing places inside and outside of your head.

Researchers in US universities have recently found compelling evidence that walking can also be quite conducive to creativity. This was the subject of a most interesting article on posted on April 10, 2016, entitled Research Backs Up the Instinct That Walking Improves Creativity, by Olivia Goldhill. I highly recommend reading this in its entirety. I will summarize and add some additional context to this, and then pose some of my own pedestrian questions.

Walking the Walk

"Walk", Image by Paul Evans

“Walk”, Image by Paul Evans

In an earlier article posted on the Stanford University News website on April 24, 2014, entitled Stanford Study Finds Walking Improves Creativity, by May Wong, researchers reported improvements in their test subjects’ Guilford’s alternate uses (GAU) test of creative divergent thinking and their compound remote associates (CRA) test of convergent thinking, conducted during and immediately after walking. The report itself is called Give Your Ideas Some Legs: The Positive Effect of Walking on Creative Thinking, by Marily Oppezzo, Ph.D. and Daniel L. Schwartz, Ph.D.. I also recommend reading both of these publications in their entirety (but please walk, don’t run, while doing so).

The effects seen upon the test subjects’ levels of creativity were nearly equivalent whether they were walking outside or else on a treadmill inside while facing a wall. It was the act of walking itself rather than the surroundings that was responsible.

Dr. Schwartz said that the “physiological changes” related to walking are “very complicated”. The reason why walking benefits “so many thinkers” is not readily apparent. However, he thinks “that the brain is focusing on doing a task it’s quite good at”. As a result, walking relaxes people and enables them to think freely.

While it is scientifically well-known that exercise can improve an individual’s mood, the underlying reason remains unclear whether, in its “more intense forms”, exercise has the same effect when compared to walking. (For the full details on this, the article links to a report entitled The Exercise Effect, by Kirsten Weir, which was the cover story in the December 2011 edition of the Monitor of Psychology, Vol. 42, No. 11.)

Walking the Talk

"Coming and Going", Image by David Robert Bliwas

“Coming and Going”, Image by David Robert Bliwas

Barbara Oakley, is an engineering professor at Oakland University and the author of A Mind for Numbers: How to Excel at Math and Science (Even If You Flunked Algebra), (TarcherPerigee, 2014), about effective learning. Her text includes the beneficial effects of walking. In an interview, she took the position that it is incorrect to assume that people are only learning when they are “focused”. Rather, she believes that walking enables us to “subconsciously process and think in a different way”. This has helped her in her own work when she has become “stuck”. After she takes a walk for 15 minutes, she finds that her ideas begin to flow again.

Some therapists have also recently tried to use the benefits of walking outdoors while conducting sessions with their clients. For example, Clay Cockrell, a therapist in New York, believes that this activity permits “more free form thinking”. He sees 35 to 40 clients each week using this approach and has found them grateful for the opportunity to do so.

Mr. Cockrell believes that New Yorkers mostly travel from destination to destination and, as he says are “never just outside out and about”.

[I respectfully disagree on that last point as I stated in my opening.]

My Questions

  • In order to achieve the full benefits of increased creativity while walking, is it necessary not to have other distractions, specifically mobile phones open, at the same time? That is, should we put away the smartphone?
  • Alternatively, does listening to the music streams or podcast downloads on our phones have any effect upon our creativity while walking?
  • Does walking and talking with other people have a positive or negative effect upon creativity? Should walking be kept to a solo activity when specifically done to spend time thinking about something?

Applying Origami Folding Techniques to Strands of DNA to Produce Faster and Cheaper Computer Chips

"Origami", Image by David Wicks

“Origami”, Image by David Wicks

We all learned about the periodic table of elements in high school chemistry class. This involved becoming familiar with the names, symbols and atomic weights of all of the chemical occupants of this display. Today, the only thing I still recall from this academic experience was when the teacher told us on the first day of class that we would soon learn to laugh at the following:

Two hydrogen atoms walk into a bar and the first one says to the other “I’ve lost my electron”. The other one answers “Are you sure?”. The first one says “I’m positive.”

I still find this hilarious but whatever I recall today about learning chemistry would likely get lost at the bottom of a thimble. I know, you are probably thinking “Sew what”.

Facing the Elements

Besides everyone’s all-time favorites like oxygen and hydrogen that love to get mixed up with each other and most of the other 116 elements, another one stands alone as the foundation upon which the modern information age was born and continues to thrive today. Silicon has been used to create integrated circuits, much more commonly known as computer chips.

This has been the case since they were first fabricated in the late 1950’s. It has remained the material of choice including nearly all the chips running every imaginable one of our modern computing and communication devices. Through major advances in design, engineering and fabrication during the last five decades, chip manufacturers have been able to vastly shrink this circuitry and pack millions of components into smaller squares of this remarkable material.

A fundamental principle that has held up and guided the semiconductor industry, under relentlessly rigorous testing during silicon’s enduring run, is Moore’s Law. In its simplest terms, it states that the number of transistors that can be written onto a chip doubles nearly every two years. There have been numerous predictions for many years that the end of Moore’s Law is approaching and that another substrate, other than silicon, will be found in order to continue making chips smaller, faster and cheaper. This has not yet come to pass and may not do so for years to come.

Nonetheless, scientists and developers from a diversity of fields, industries and academia have remained in pursuit of alternative computing materials. This includes elements and compounds to improve or replace silicon’s extensible properties, and other efforts to research and fabricate entirely new computing architectures. One involves exploiting the spin states of electrons in a rapidly growing field called quantum computing (this Wikipedia link provides a detailed and accessible survey of its fundamentals and operations), and another involves using, of all things, DNA as a medium.

The field of DNA computing has actually been around in scientific labs and journals for several decades but has not gained much real traction as a viable alternative ready to produce computing chips for the modern marketplace. Recently though, a new advance was reported in a fascinating article posted on on March 13, 2016, entitled DNA ‘origami’ Could Help Build Faster, Cheaper Computer Chips, provided by the American Chemical Society (no author is credited). I will summarize and annotate it in order to add some more context, and then pose several of my own molecular questions.

Know When to Fold ‘Em

A team of researchers reported that fabricating such chips is possible when DNA is folded and “formed into specific shapes” using a process much like origami, the Japanese art of folding paper into sculptures. They presented their findings at the 251st American Chemical Society Meeting & Exposition held in San Diego, CA during March 13 through 17, 2016. Their paper entitled 3D DNA Origami Templated Nanoscale Device Fabrication, appears listed as number 305 on Page 202 of the linked document.  Their presentation on March 14, 2016, was captured on this 16-minute YouTube video, with Adam T. Woolley, Ph.D. of Brigham Young University as the presenter for the researchers.

According to Dr. Woolley, researchers want to use DNA’s “small size, base-pairing capabilities and ability to self-assemble” in order to produce “nanoscale electronics”. By comparison, silicon chips currently in production contain features 14 nanometers wide, which turn out to be 10 times “the diameter of single-stranded DNA”. Thus, DNA could be used to build chips on a much smaller and efficient scale.

However, the problem with using DNA as a chip-building material is that it is not a good conductor of electrical current. To circumvent this, Dr. Woolley and his team is using “DNA as a scaffold” and then adding other materials to the assembly to create electronics. He is working on this with his colleagues, Robert C. Davis, Ph.D. and John N. Harb, Ph.D, at Brigham Young University. They are drawing upon their prior work on “DNA origami and DNA nanofabrication”.

Know When to Hold ‘Em

To create this new configuration of origami-ed DNA, they begin with a single long strand of it, which is comparable to a “shoelace” insofar as it is “flexible and floppy”. Then they mix this with shorter stand of DNA called “staples” which, in turn, “use base pairing” to gather and cross-link numerous other “specific segments of the long strand” to build an intended shape.

Dr. Woolley’s team is not satisfied with just replicating “two-dimensional circuits”, but rather, 3D circuitry because it can hold many more electronic components. An undergraduate who works with Dr. Woolley named Kenneth Lee, has already build such a “3-D, tube-shaped DNA origami structure”. He has been further experimenting with adding more components including “nano-sized gold particles”. He is planning to add still more nano-items to his creations with the objective of “forming a semiconductor”.

The entire team’s lead objective is to “place such tubes, and other DNA origami structures, at particular sites on the substrate”. As well, they are seeking us use gold nanoparticles to create circuits. The DNA is thus being used as “girders” to create integrated circuits.

Dr. Woolley also pointed to the advantageous cost differential between the two methods of fabrication. While traditional silicon chip fabrication facilities can cost more than $1 billion, exploiting DNA’s self-assembling capabilities “would likely entail much lower startup funding” and yield potentially “huge cost savings”.

My Questions

  • What is the optimal range and variety in design, processing power and software that can elevate DNA chips to their highest uses? Are there only very specific applications or can they be more broadly used in commercial computing, telecom, science, and other fields?
  • Can any of the advances currently being made and widely followed in the media using the CRISPR gene editing technology somehow be applied here to make more economical, extensible and/or specialized DNA chips?
  • Does DNA computing represent enough of a potential market to attract additional researchers, startups, venture capital and academic training to be considered a sustainable technology growth sector?
  • Because of the potentially lower startup and investment costs, does DNA chip development lend itself to smaller scale crowd-funded support such Kickstarter campaigns? Might this field also benefit if it was treated more as an open source movement?

February 19, 2017 Update:  On February 15, 2017, on the NOVA science show on PBS in the US, there was an absolutely fascinating documentary shown entitled The Origami Revolution. (The link is to the full 53-minute broadcast.) It covered many of the today’s revolutionary applications of origami in science, mathematics, design, architecture and biology. It was both highly informative and visually stunning. I highly recommend clicking through to learn about how some very smart people are doing incredibly imaginative and practical work in modern applications of this ancient art.