Digital Smarts Everywhere: The Emergence of Ambient Intelligence

Image from Pixabay

Image from Pixabay

The Troggs were a legendary rock and roll band who were part of the British Invasion in the late 1960’s. They have always been best known for their iconic rocker Wild Thing. This was also the only Top 10 hit that ever had an ocarina solo. How cool is that! The band went on to have two other major hits, With a Girl Like You and Love is All Around.¹

The third of the band’s classic singles can be stretched a bit to be used as a helpful metaphor to describe an emerging form pervasive “all around”-edness, this time in a more technological context. Upon reading a fascinating recent article on TechCrunch.com entitled The Next Stop on the Road to Revolution is Ambient Intelligence, by Gary Grossman, on May 7, 2016, you will find a compelling (but not too rocking) analysis about how the rapidly expanding universe of digital intelligent systems wired into our daily routines is becoming more ubiquitous, unavoidable and ambient each day.

All around indeed. Just as romance can dramatically affect our actions and perspectives, studies now likewise indicate that the relentless global spread of smarter – – and soon thereafter still smarter – – technologies is comparably affecting people’s lives at many different levels.² 

We have followed just a sampling of developments and trends in the related technologies of artificial intelligence, machine learning, expert systems and swarm intelligence in these 15 Subway Fold posts. I believe this new article, adding “ambient intelligence” to the mix, provides a timely opportunity to bring these related domains closer together in terms of their common goals, implementations and benefits. I highly recommend reading Mr. Grossman’s piece it in its entirety.

I will summarize and annotate it, add some additional context, and then pose some of my own Troggs-inspired questions.

Internet of Experiences

Digital this, that and everything is everywhere in today’s world. There is a surging confluence of connected personal and business devices, the Internet, and the Internet of Things (I0T) ³. Woven closely together on a global scale, we have essentially built “a digital intelligence network that transcends all that has gone before”. In some cases, this quantum of advanced technologies gains the “ability to sense, predict and respond to our needs”, and is becoming part of everyone’s “natural behaviors”.

A forth industrial revolution might even manifest itself in the form of machine intelligence whereby we will interact with the “always-on, interconnected world of things”. As a result, the Internet may become characterized more by experiences where users will converse with ambient intelligent systems everywhere. The supporting planks of this new paradigm include:

A prediction of what more fully realized ambient intelligence might look like using travel as an example appeared in an article entitled Gearing Up for Ambient Intelligence, by Lisa Morgan, on InformationWeek.com on March 14, 2016. Upon leaving his or her plane, the traveler will receive a welcoming message and a request to proceed to the curb to retrieve their luggage. Upon reaching curbside, a self-driving car6 will be waiting with information about the hotel booked for the stay.

Listening

Another article about ambient intelligence entitled Towards a World of Ambient Computing, by Simon Bisson, posted on ZDNet.com on February 14, 2014, is briefly quoted for the line “We will talk, and the world will answer”, to illustrate the point that current technology will be morphing into something in the future that would be nearly unrecognizable today. Grossman’s article proceeds to survey a series of commercial technologies recently brought to market as components of a fuller ambient intelligence that will “understand what we are asking” and provide responsive information.

Starting with Amazon’s Echo, this new device can, among other things:

  • Answer certain types of questions
  • Track shopping lists
  • Place orders on Amazon.com
  • Schedule a ride with Uber
  • Operate a thermostat
  • Provide transit schedules
  • Commence short workouts
  • Review recipes
  • Perform math
  • Request a plumber
  • Provide medical advice

Will it be long before we begin to see similar smart devices everywhere in homes and businesses?

Kevin Kelly, the founding Executive Editor of WIRED and a renowned futurist7, believes that in the near future, digital intelligence will become available in the form of a utility8 and, as he puts it “IQ as a service”. This is already being done by Google, Amazon, IBM and Microsoft who are providing open access to sections of their AI coding.9 He believes that success for the next round of startups will go to those who enhance and transforms something already in existence with the addition of AI. The best example of this is once again self-driving cars.

As well, in a chapter on Ambient Computing from a report by Deloitte UK entitled Tech Trends 2015, it was noted that some products were engineering ambient intelligence into their products as a means to remain competitive.

Recommending

A great deal of AI is founded upon the collection of big data from online searching, the use of apps and the IoT. This universe of information supports neural networks learn from repeated behaviors including people’s responses and interests. In turn, it provides a basis for “deep learning-derived personalized information and services” that can, in turn, derive “increasingly educated guesses with any given content”.

An alternative perspective, that “AI is simply the outsourcing of cognition by machines”, has been expressed by Jason Silva, a technologist, philosopher and video blogger on Shots of Awe. He believes that this process is the “most powerful force in the universe”, that is, of intelligence. Nonetheless, he sees this as an evolutionary process which should not be feared. (See also the December 27, 2014 Subway Fold post entitled  Three New Perspectives on Whether Artificial Intelligence Threatens or Benefits the World.)

Bots are another contemporary manifestation of ambient intelligence. These are a form of software agent, driven by algorithms, that can independently perform a range of sophisticated tasks. Two examples include:

Speaking

Optimally, bots should also be able to listen and “speak” back in return much like a 2-way phone conversation. This would also add much-needed context, more natural interactions and “help to refine understanding” to these human/machine exchanges. Such conversations would “become an intelligent and ambient part” of daily life.

An example of this development path is evident in Google Now. This service combines voice search with predictive analytics to present users with information prior to searching. It is an attempt to create an “omniscient assistant” that can reply to any request for information “including those you haven’t thought of yet”.

Recently, the company created a Bluetooth-enable prototype of lapel pin based on this technology that operates just by tapping it much like the communicators on Star Trek. (For more details, see Google Made a Secret Prototype That Works Like the Star Trek Communicator, by Victor Luckerson, on Time.com, posted on November 22, 2015.)

The configurations and specs of AI-powered devices, be it lapel pins, some form of augmented reality10 headsets or something else altogether, supporting such pervasive and ambient intelligence are not exactly clear yet. Their development and introduction will take time but remain inevitable.

Will ambient intelligence make our lives any better? It remains to be seen, but it is probably a viable means to handle some of more our ordinary daily tasks. It will likely “fade into the fabric of daily life” and be readily accessible everywhere.

Quite possibly then, the world will truly become a better place to live upon the arrival of ambient intelligence-enabled ocarina solos.

My Questions

  • Does the emergence of ambient intelligence, in fact, signal the arrival of a genuine fourth industrial revolution or is this all just a semantic tool to characterize a broader spectrum of smarter technologies?
  • How might this trend affect overall employment in terms of increasing or decreasing jobs on an industry by industry basis and/or the entire workforce? (See also this June 4, 2015 Subway Fold post entitled How Robots and Computer Algorithms Are Challenging Jobs and the Economy.)
  • How might this trend also effect non-commercial spheres such as public interest causes and political movements?
  • As ambient intelligence insinuates itself deeper into our online worlds, will this become a principal driver of new entrepreneurial opportunities for startups? Will ambient intelligence itself provide new tools for startups to launch and thrive?

 


1.   Thanks to Little Steven (@StevieVanZandt) for keeping the band’s music in occasional rotation on The Underground Garage  (#UndergroundGarage.) Also, for an appreciation of this radio show see this August 14, 2014 Subway Fold post entitled The Spirit of Rock and Roll Lives on Little Steven’s Underground Garage.

2.  For a remarkably comprehensive report on the pervasiveness of this phenomenon, see the Pew Research Center report entitled U.S. Smartphone Use in 2015, by Aaron Smith, posted on April 1, 2015.

3These 10 Subway Fold posts touch upon the IoT.

4.  The Subway Fold category Big Data and Analytics contains 50 posts cover this topic in whole or in part.

5.  The Subway Fold category Telecommunications contains 12 posts cover this topic in whole or in part.

6These 5 Subway Fold posts contain references to self-driving cars.

7.   Mr. Kelly is also the author of a forthcoming book entitled The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future, to be published on June 7, 2016 by Viking.

8.  This September 1, 2014 Subway Fold post entitled Possible Futures for Artificial Intelligence in Law Practice, in part summarized an article by Steven Levy in the September 2014 issue of WIRED entitled Siri’s Inventors Are Building a Radical New AI That Does Anything You Ask. This covered a startup called Viv Labs whose objective was to transform AI into a form of utility. Fast forward to the Disrupt NY 2016 conference going on in New York last week. On May 9, 2016, the founder of Viv, Dag Kittlaus, gave his presentation about the Viv platform. This was reported in an article posted on TechCrunch.com entitled Siri-creator Shows Off First Public Demo of Viv, ‘the Intelligent Interface for Everything’, by Romain Dillet, on May 9, 2016. The video of this 28-minute presentation is embedded in this story.

9.  For the full details on this story see a recent article entitled The Race Is On to Control Artificial Intelligence, and Tech’s Future by John Markoff and Steve Lohr, published in the March 25, 2016 edition of The New York Times.

10These 10 Subway Fold posts cover some recent trends and development in augmented reality.

“Technographics” – A New Approach for B2B Marketers to Profile Their Customers’ Tech Systems

"Gold Rings - Sphere 1" Image by Linda K

“Gold Rings – Sphere 1” Image by Linda K

Today’s marketing and business development professionals use a wide array of big data collection and analytical tools to create and refine sophisticated profiles of market segments and their customer bases. These are deployed in order to systematically and scientifically target and sell their goods and services in steadily changing marketplaces.

These processes can include, among a multitude of other vast data sets and methodologies, demographics, web user metrics and econometrics. Businesses are always looking for a data-driven edge in highly competitive sectors and such profiling, when done correctly, can be very helpful in detecting and interpreting market trends, and consistently keeping ahead of their rivals. (The Subway Fold category of Big Data and Analytics now contains 50 posts about a variety of trends and applications in this field.)

I will briefly to this add my own long-term yet totally unscientific study of office-mess-ographics. Here I have been looking for any correlation between the relative states of organization – – or entropy – – in people’s offices and their work’s quality and output.  The results still remain inconclusive after years of study.

One of the most brilliant and accomplished people I have ever known had an office that resembled a cave deep in the earth with piles of paper resembling stalagmites all over it. Even more remarkably, he could reach into any one of those piles and pull out exactly the documents he wanted. His work space was so chaotic that there was a long-standing joke that Jimmy Hoffa’s and Judge Crater’s long-lost remains would be found whenever ever he retired and his office was cleaned out.

Speaking of office-focused analytics, an article posted on VentureBeat.com on March 5, 2016, entitled CMOs: ‘Technographics’ is the New Demographics, by Sean Zinsmeister, brought news of a most interesting new trend. I highly recommend reading this in its entirety. I will summarize and add some context to it, and then pose a few question-ographics of my own.

New Analytical Tool for B2B Marketers

Marketers are now using a new methodology call technography to analyze their customers’ “tech stack“, a term of art for the composition of their supporting systems and platforms. The objective of this approach is to deeply understand what this says about them as a company and, moreover, how can this be used in business-to-business (B2B) marketing campaigns. Thus applied, technography can identify “pain points” in products and alleviate them for current and prospective customers.

Using established consumer marketing methods, there is much to be learned and leveraged on how technology is being used by very granular segments of users bases.  For example:

By virtue of this type of technographic data, retailers can target their ads in anticipation of “which customers are most likely to shop in store, online, or via mobile”.

Next, by transposing this form of well-established marketing approach next upon B2B commerce, the objective is to carefully examine the tech stacks of current and future customers in order to gain a marketing advantage. That is, to “inform” a business’s strategy and identify potential new roles and needs to be met. These corporate tech stacks can include systems for:

  • Office productivity
  • Project management
  • Customer relationship management (CRM)
  • Marketing

Gathering and Interpreting Technographic Signals and Nuances

Technographics can provide unique and valuable insights into assessing, for example, whether a customer values scalability or ease-of-use more, and then act upon this.

As well, some of these technographic signals can be indicative of other factors not, per se, directly related to technology. This was the case at Eloqua, a financial technology concern. They noticed their marketing systems have predictive value in determining the company’s best prospects. Furthermore, they determined that companies running their software were inclined “to have a certain level of technological sophistication”, and were often large enough to have the capacity to purchase higher-end systems.

As business systems continually grow in their numbers and complexity, interpreting technographic nuances has also become more of a challenge. Hence, the application of artificial intelligence (AI) can be helpful in detecting additional useful patterns and trends. In a July 2011 TED Talk by Ted Slavin, directly on point here, entitled How Algorithms Shape Our World, he discussed how algorithms and machine learning are needed today to help make sense out of the massive and constantly growing amounts of data. (The Subway Fold category of Smart Systems contains 15 posts covering recent development and applications involving AI and machine learning.)

Technographic Resources and Use Cases

Currently, technographic signals are readily available from various data providers including:

They parse data using such factors as “web hosting, analytics, e-commerce, advertising, or content management platforms”. Another firm called Ghostery has a Chrome browser extension illuminating the technologies upon which any company’s website is built.

The next key considerations are to “define technographic profiles and determine next-best actions” for specific potential customers. For instance, an analytics company called Looker creates “highly targeted campaigns” aimed at businesses who use Amazon Web Services (AWS). The greater the number of marketers who undertake similar pursuits, the more they raise the value of their marketing programs.

Technographics can likewise be applied for competitive leverage in the following use cases:

  • Sales reps prospecting for new leads can be supported with more focused messages for potential new customers. These are shaped by understanding their particular motivations and business challenges.
  • Locating opportunities in new markets can be achieved by assessing the tech stacks of prospective customers. Such analytics can further be used for expanding business development and product development. An example is the online training platform by Mindflash. They detected a potential “demand for a Salesforce training program”. Once it became available, they employed technographic signals to pinpoint customers to whom they could present it.
  • Enterprise wide decision-making benefits can be achieved by adding “value in areas like cultural alignment”. Familiarity with such data for current employees and job seekers can aid businesses with understanding the “technology disposition” of their workers. Thereafter, its alignment with the “customers or partners” can be pursued.  Furthermore, identifying areas where additional training might be needed can help to alleviate productivity issues resulting from “technology disconnects between employees”.

Many businesses are not yet using technographic signals to their full advantage. By increasing such initiatives, businesses can acquire a much deeper understanding of their inherent values. In turn, the resulting insights can have a significant effect on the experiences of their customers and, in turn, elevate their resulting levels of loyalty, retention and revenue, as well as the magnitude of deals done.

My Questions

  • Would professional service industries such as law, medicine and accounting, and the vendors selling within these industries, benefit from integrating technographics into their own business development and marketing efforts?
  • Could there be, now or in the future, an emerging role for dedicated technographics specialists, trainers and consultants? Alternatively, should these new analytics just be treated as another new tool to be learned and implemented by marketers in their existing roles?
  • If a company identifies some of their own employees who might benefit from additional training, how can they be incentivized to participate in it? Could gamification techniques also be applied in creating these training programs?
  • What, if any, privacy concerns might surface in using technographics on potential customer leads and/or a company’s own internal staff?

Semantic Scholar and BigDIVA: Two New Advanced Search Platforms Launched for Scientists and Historians

"The Chemistry of Inversin", Image by Raymond Bryson

“The Chemistry of Inversion”, Image by Raymond Bryson

As powerful, essential and ubiquitous as Google and its search engine peers are across the world right now, needs often arise in many fields and marketplaces for platforms that can perform much deeper and wider digital excavating. So it is that two new highly specialized search platforms have just come online specifically engineered, in these cases, for scientists and historians. Each is structurally and functionally quite different from the other but nonetheless is aimed at very specific professional user bases with advanced researching needs.

These new systems provide uniquely enhanced levels of context, understanding and visualization with their results. We recently looked at a very similar development in the legal professions in an August 18, 2015 Subway Fold post entitled New Startup’s Legal Research App is Driven by Watson’s AI Technology.

Let’s have a look at both of these latest innovations and their implications. To introduce them, I will summarize and annotate two articles about their introductions, and then I will pose some additional questions of my own.

Semantic Scholar Searches for New Knowledge in Scientific Papers

First, the Allen Institute for Artificial Intelligence (A2I) has just launched its new system called Semantic Scholar, freely accessible on the web. This event was covered on NewScientist.com in a fascinating article entitled AI Tool Scours All the Science on the Web to Find New Knowledge on November 2, 2015 by Mark Harris.

Semantic Scholar is supported by artificial intelligence (AI)¹ technology. It is automated to “read, digest and categorise findings” from approximately two million scientific papers published annually. Its main objective is to assist researchers with generating new ideas and “to identify previously overlooked connections and information”. Because of the of the overwhelming volume of the scientific papers published each year, which no individual scientist could possibly ever read, it offers an original architecture and high-speed manner to mine all of this content.

Oren Etzioni, the director of A2I, termed Semantic Scholar a “scientist’s apprentice”, to assist them in evaluating developments in their fields. For example, a medical researcher could query it about drug interactions in a certain patient cohort having diabetes. Users can also pose their inquiries in natural language format.

Semantic Scholar operates by executing the following functions:

  • crawling the web in search of “publicly available scientific papers”
  • scanning them into its database
  • identifying citations and references that, in turn, are assessed to determine those that are the most “influential or controversial”
  • extracting “key phrases” appearing similar papers, and
  • indexing “the datasets and methods” used

A2I is not alone in their objectives. Other similar initiatives include:

Semantic Scholar will gradually be applied to other fields such as “biology, physics and the remaining hard sciences”.

BigDIVA Searches and Visualized 1,500 Year of History

The second innovative search platform is called Big Data Infrastructure Visualization Application (BigDIVA). The details about its development, operation and goals were covered in a most interesting report posted online on  NC State News on October 12, 2015 entitled Online Tool Aims to Help Researchers Sift Through 15 Centuries of Data by Matt Shipman.

This is joint project by the digital humanities scholars at NC State University and Texas A&M University. Its objective is to assist researchers in, among other fields, literature, religion, art and world history. This is done by increasing the speed and accuracy of searching through “hundreds of thousands of archives and articles” covering 450 A.D. to the present. BigDIVA was formally rolled out at NC State on October 16, 2015.

BigDIVA presents users with an entirely new visual interface, enabling them to search and review “historical documents, images of art and artifacts, and any scholarship associated” with them. Search results, organized by categories of digital resources, are displayed in infographic format4. The linked NC State News article includes a photo of this dynamic looking interface.

This system is still undergoing beta testing and further refinement by its development team. Expansion of its resources on additional historical periods is expected to be an ongoing process. Current plans are to make this system available on a subscription basis to libraries and universities.

My Questions

  • Might the IBM Watson, Semantic Scholar, DARPA and BigDIVA development teams benefit from sharing design and technical resources? Would scientists, doctors, scholars and others benefit from multi-disciplinary teams working together on future upgrades and perhaps even new platforms and interface standards?
  • What other professional, academic, scientific, commercial, entertainment and governmental fields would benefit from these highly specialized search platforms?
  • Would Google, Bing, Yahoo and other commercial search engines benefit from participating with the developers in these projects?
  • Would proprietary enterprise search vendors likewise benefit from similar joint ventures with the types of teams described above?
  • What entrepreneurial opportunities might arise for vendors, developers, designers and consultants who could provide fuller insight and support for developing customized search platforms?

 


October 19, 2017 Update: For the latest progress and applications of the Semantic Scholar system, see the latest report in a new post on the Economist.com entitled A Better Way to Search Through Scientific Papers, dated October 19, 2017.


1.  These 11 Subway Fold posts cover various AI applications and developments.

2.  These seven Subway Fold posts cover a range of IBM Watson applications and markets.

3A new history of DARPA written by Annie Jacobsen was recently published entitled The Pentagon’s Brain (Little Brown and Company, 2015).

4.  See this January 30, 2015 Subway Fold post entitled Timely Resources for Studying and Producing Infographics on this topic.

Visionary Developments: Bionic Eyes and Mechanized Rides Derived from Dragonflies

"Transparency and Colors", Image by coniferconifer

“Transparency and Colors”, Image by coniferconifer

All manner of software and hardware development projects strive to diligently take out every single bug that can be identified¹. However, a team of researchers who is currently working on a fascinating and potentially valuable project is doing everything possible to, at least figuratively, leave their bugs in.

This involves a team of Australian researchers who are working on modeling the vision of dragonflies. If they are successful, there could be some very helpful implications for applying their work to the advancement of bionic eyes and driverless cars.

When the design and operation of biological systems in nature are adapted to improve man-made technologies as they are being here, such developments are often referred to as being biomimetic².

The very interesting story of this, well, visionary work was reported in an article in the October 6, 2015 edition of The Wall Street Journal entitled Scientists Tap Dragonfly Vision to Build a Better Bionic Eye by Rachel Pannett. I will summarize and annotate it, and pose some bug-free questions of my own. Let’s have a look and see what all of this organic and electronic buzz is really about.

Bionic Eyes

A research team from the University of Adelaide has recently developed this system modeled upon a dragonfly’s vision. It is built upon a foundation that also uses artificial intelligence (AI)³. Their findings appeared in an article entitled Properties of Neuronal Facilitation that Improve Target Tracking in Natural Pursuit Simulations that was published in the June 6, 2015 edition of The Royal Society Interface (access credentials required). The authors include Zahra M. Bagheri, Steven D. Wiederman, Benjamin S. Cazzolato, Steven Grainger, and David C. O’Carroll. The funding grant for their project was provided by the Australian Research Council.

While the vision of dragonflies “cannot distinguish details and shapes of objects” as well as humans, it does possess a “wide field of vision and ability to detect fast movements”. Thus, they can readily track of targets even within an insect swarm.

The researchers, including Dr. Steven Wiederman, the leader of the University of Adelaide team, believe their work could be helpful to the development work on bionic eyes. These devices consist of an  artificial implant placed in a person’s retina that, in turn, is connected to a video camera. What a visually impaired person “sees” while wearing this system is converted into electrical signals that are communicated to the brain. By adding the software model of the dragonfly’s 360-degree field of vision, this will add the capability for the people using it to more readily detect, among other things, “when someone unexpectedly veers into their path”.

Another member of the research team and one of the co-authors of their research paper, a Ph.D. candidate named Zahra Bageri, said that dragonflies are able to fly so quickly and be so accurate “despite their visual acuity and a tiny brain around the size of a grain of rice”4 In other areas of advanced robotics development, this type of “sight and dexterity” needed to avoid humans and objects has proven quite challenging to express in computer code.

One commercial company working on bionic eye systems is Second Sight Medical Products Inc., located in California. They have received US regulatory approval to sell their retinal prosthesis.

Driverless Cars

In the next stage of their work, the research team is currently studying “the motion-detecting neurons in insect optic lobes”, in an effort to build a system that can predict and react to moving objects. They believe this might one day be integrated into driverless cars in order to avoid pedestrians and other cars5. Dr. Wiederman foresees the possible commercialization of their work within the next five to ten years.

However, obstacles remain in getting this to market. Any integration into a test robot would require a “processor big enough to simulate a biological brain”. The research team believes that is can be scaled down since the “insect-based algorithms are much more efficient”.

Ms. Bagheri noted that “detecting and tracking small objects against complex backgrounds” is quite a technical challenge. She gave as an example of this a  baseball outfielder who has only seconds to spot, track and predict where a ball hit will fall in the field in the midst of a colorful stadium and enthusiastic fans6.

My Questions

  • As suggested in the article, might this vision model be applicable in sports to enhancing live broadcasts of games, helping teams review their game day videos afterwards by improving their overall play, and assisting individual players to analyze how they react during key plays?
  • Is the vision model applicable in other potential safety systems for mass transportation such as planes, trains, boats and bicycles?
  • Could this vision model be added to enhance the accuracy, resolution and interactivity of virtual reality and augmented reality systems? (These 11 Subway Fold posts appearing in the category of Virtual and Augmented Reality cover a range of interesting developments in this field.)

 


1.  See this Wikipedia page for a summary of the extraordinary career Admiral Grace Hopper. Among her many technological accomplishments, she was a pioneer in developing modern computer programming. She was also the originator of the term computer “bug”.

2For an earlier example of this, see the August 18, 2014 Subway Fold post entitled IBM’s New TrueNorth Chip Mimics Brain Functions.

3The Subway Fold category of Smart Systems contains 10 posts on AI.

4Speaking of rice-sized technology, see also the April 14, 2015 Subway Fold post entitled Smart Dust: Specialized Computers Fabricated to Be Smaller Than a Single Grain of Rice.

5While the University of Adelaide research team is not working with Google, nonetheless the company has been a leader in the development of autonomous cars with their Google’s Self-Driving Car Project.

6New York’s beloved @Mets might also prove to be worthwhile subjects to model because of their stellar play in the 2015 playoffs. Let’s vanquish those dastardly LA Dodgers on Thursday night. GO METS!