Book Review of “Inventology: How We Dream Up Things That Change the World”

"Toolbox_LRG", Image by Limor

“Toolbox_LRG”, Image by Limor.

My father loved to tell this story: One of his classmates while he attended the University of Pennsylvania School of Dental Medicine was named Robert Schattner. Several years after they graduated, he went on to invent the over-the-counter sore throat lozenge and spray called Chloraseptic. This remedy has been on the market for decades ever since then.

Schattner first devised this product entirely on his own after someone who had just had some teeth pulled asked him for an antiseptic to relieve the pain. He later sold the formula and the rights to a pharmaceutical company for $4M. (Given the rate of inflation since then, this sum today would have been magnitudes more and certainly nothing to sneeze or cough at.)

Thereafter he left the practice of dentistry and went on became a successful businessman and philanthropist. He also contributed for the construction of a new building for the U Penn dental school named the Robert Schattner Center. A brief summary of his invention and contributions can be found in an article entitled Capital Buzz: Chloraseptic Inventor Offers Remedy for School, by Thomas Heath, which appeared in The Washington Post on October 23, 2011.

Mapping the Inventive Process

This is a classic example of how inventors find their ideas and inspiration. There are many other circumstances, methodologies, environments, personality traits, events, technologies and chances occurrences that can also precipitate new inventions. All of them are expertly explained and explored in Inventology: How We Dream Up Things That Change the World (Eamon Dolan/Houghton Mifflin Harcourt, 2016), by Pagan Kennedy.

The book’s five sections distinctly map out the steps in the inception and realization of things so entirely new. In doing so, the author transports the reader to center of this creative process. She deftly uses highly engaging stories, exposition and analyses to illuminate the resourcefulness and persistence of inventors leading to their breakthroughs.

Some of these tales may be familiar but they are skillfully recounted and placed into new contexts. For example, in 1968, an engineer and inventor named Douglas Englebart demonstrated a working computer for the first time with a heretofore unseen “mouse” and “graphical user interface”. (This story has gone on to become a tech legend known as The Mother of All Demos.) Others are presented who are less well-known but brought to life in highly compelling narratives. Together they provide valuable new lessons on the incubation of inventions along a wide spectrum ranging from sippy cups and water toys to mobile phones and medical devices.

The author has seemingly devised a meta-invention of her own: A refreshingly new perspective on reporting the who, what, where and why of inventors, their creations and their wills to succeed. It is a richly detailed schematic of how a creative mind can conceive and execute an original idea for a new widget and, moreover, articulate the need for it and the problem it solves.

Among other methods, Ms. Pagan covers the practice of conducting thought experiments on new concepts that may or may not lend themselves to actual experimentation in the real world. This process was made well-known by Einstein’s efforts to visualize certain problems in physics that led him to his monumental achievements. I suggest trying a thought experiment here to imagine the range of the potential areas of applications for Inventology to evaluate, in an age of countless startups and rapid scientific and technological advancements, all of the populations, challenges and companies it might benefit. Indeed, this book could readily inspire nearly anyone so inclined to pick up a pencil or soldering iron in order to launch the realization of their own proverbial better mousetrap.

Resources for Inventors

Within all of the lively content packed into this book, the struggles and legacy of a previously little known and tragically persecuted figure who learned to harness and teach the inventive process, springs right off the pages. He was a fascinating figure named  Genrich Altshuller who worked as an engineer, writer and inventor in Russia. His most important contribution to the science of invention was the development of the Theory of Inventive Problem Solving (better known by its Russian acronym of “TRIZ”). This is a comprehensive system for analyzing and implementing inventive solutions to problems of nearly every imaginable type and scale. Altschuller was willing to share this and instruct anyone who was willing to participate in studying TRIZ. It is still widely used across the modern world. The author masterfully breaks down and clearly explains its essential components.

The true gem in the entire book is how Altshuller, while imprisoned in a brutal jail in Stalinist Russia, used only his mind to devise an ingenious solution to outwit his relentless interrogators. No spoilers here, but it is an emotional triumph that captures the heart and spirit of this remarkable man. Altshuller’s life and influence in generating thousands of inventions reads as though it might make for a dramatic biopic.

Also threaded and detailed throughout the book are the current bounty of easily accessible technological tools available to inventors. First, the web holds a virtual quantum of nearly limitless data that can be researched, processed, shared, crowdsourced (on sites such as InnoCentive) and crowdfunded (on sites such as Kickstarter and Indigogo), in search of medical advances, among many other fields.¹ Second, 3D printing² can be used to quickly and inexpensively fabricate and work on enhancing prototypes of inventions. As a result of this surfeit of resources, the lengthy timelines and prohibitive cost curves that previously discouraged and delayed inventors have now been significantly reduced.

Impossibility is Only Temporary

I live in a neighborhood where it is nearly impossible to park a car. An open parking space has a half-life on the street of about .000001 nano-seconds before it is taken. This situation often reminds me of a suggestion my father also made to me when I was very young. He told me that if I really wanted to solve an important problem when I grew up, I should try to invent a car that, at the press of a button, would fold up into the size and shape of a briefcase that could be easily carried away. At the time, I thought it was impossible and immediately put the, well, brakes on this idea.

Nonetheless, as Inventology expressly and persuasively makes its own brief case, true inventors see impossibility as merely a temporary condition that, with enough imagination and determination, can be overcome. For budding Edisons and creative problem solvers everywhere, this book adds a whole new meaning to the imperative that nothing is truly impossible if you try hard enough and long enough to solve it. This indefatigable spirit permeates all 223 pages of this wonderfully enjoyable, inspirational and informative book.

Inventing your own reason to read it should be easy.


For a dozen very timely examples of inventors and their inventions further typifying much of the content and spirit of Inventology, I highly recommend reading a new feature and viewing its accompanying video posted on Quartz.com on April 26, 2016, entitled These Top Twelve Inventions Could One Day Change the World, by Mike Murphy. It covers the finalists in the 2016 European Inventors Award competition currently being run by the European Patent Office.


1.  For example, last week’s Only Human podcast on NPR included a report on how a woman with Type 1 (T1) diabetes, along with the assistance of her husband, had hacked together an artificial pancreas (called a “closed loop” system), and then shared the technical specs online with other T1s in the Seattle area. I highly recommend listening to this podcast entitled The Robot Vacuum Ate My Pancreas in its entirety.

2.  See also these six Subway Fold posts for a sampling of other trends and developments in 3D printing.

Medical Researchers are Developing a “Smart Insulin Patch”

“Spinning Top”, Image by Creativity103

In an innovative joint project at the University of North Carolina and at North Carolina State University, medical researchers are currently developing a “smart insulin patch” that can both measure blood glucose levels and then administer insulin to regulate it as needed for people with Type 1 diabetes. This is yet another approach at the core of much academic and commercial research and development at creating a “closed loop” system that senses and responds to changes in blood sugar.

Other ongoing research in this field is attempting to integrate continuous glucose sensors with insulin pumps, both of which are available on the market but not yet working together in a viable product with regulatory approval. Both of these approaches are efforts to create a biomedical system that can act as a fully functioning artificial pancreas for people with Type 1 diabetes.

The ongoing work on the smart insulin patch was covered in a fascinating article in the June 22, 2015 edition of The Washington Post entitled The ‘Smart’ Insulin Patch That Might One Day Replace Injections for Diabetic Patients by Brady Dennis. I will summarize, annotate and add a few questions of my own. (Two other recent Subway Fold posts on  October 3, 2014 and June 16, 2015, clickable here and here, respectively, have covered one project to upload glucose monitoring data to the mobile devices of friends and relatives, and another by a medical device manufacturer using social media to reach out to people using insulin pumps.)

This new smart insulin patch is a square shape as small as a penny and is word on the skin. One side of it contains numerous tiny “microneedles” that the face the skin and contain “both insulin and a glucose-sensing enzyme”. Thus, when an increase in blood glucose is detected, the patch can release insulin into the patient’s system “quickly and painlessly”. As a result, the necessity for the delivering insulin by traditional means of a syringe or insulin pump is eliminated.

To date, the development team has only tested the patch on mice. Early test results, published here in The Proceedings of the National Academy of Science (subscription required), showed that the patch worked on the test animals starting within 30 minutes of its application and then lasting for up to nine hours.

Dr. John Buse, one of the co-authors and the director of the UNC Diabetes Center, finds this “exciting”, but he also believes it will take years to determine if this will work in humans. A very informative and detailed news release with photos of the patch and the microneedles, entitled Smart Insulin Patch Could Replace Painful Injections for Diabetes, has recently posted on the UNC Diabetes Center website.

Using current technology requires people with Type 1 diabetes to check their blood glucose levels a number of times each day and then corresponding regulate their insulin to balance the effects of these up and down readings. Other researchers have endeavored to “closed the loop” between insulin pumps and continuous glucose monitors, but these systems still require close attention and adjustments by the patient

The smart insulin patch, if proven safe and viable, could one day dramatically change protocols for the care of Type 1 diabetes. It is an attempt to more directly emulate the human body’s own insulin regulatory system. As well, the microneedles in the patch are designed to be far less invasive and nearly painless than today’s use of injections, pumps and sensors, all of which require larger needles to pierce the skin. It is designed to directly “tap into the blood flowing through the capillaries” in order to become activated.

The researcher team has also found that they could “fine tune the patch” to attain blood glucose levels within an acceptable range. As a result, they are hopeful that, in the future, the patch could be adjusted to each individual patient’s system (including, among other things, weight and insulin sensitivity), and the duration of the patch’s effectiveness could be extended to several days.

My questions are as follows:

  • How exactly will the patch be personalized to meet the biological needs of each user? How will patients manage and regulate this from patch to patch? Is the goal to calibrate a single patch for the user or a series of patches as the user’s needs and environment changes?
  • Can the patches be customized and fabricated using today’s commercial 3D printing technology?
  • Will blood glucose levels still need to be checked regularly using current methods in order to assess and align the patch’s effectiveness and accuracy?
  • Can the patch’s data on blood glucose levels and insulin dosages be uploaded onto mobile devices in order to be monitored by the patient’s health professionals and family members?
  • Might the patch be used in conjunction with or even integrated into the Apple Watch as a medical app?
  • Can other medications that a person with diabetes is taking also be administered, monitored and regulated with the patch, perhaps making it even “smarter”?